Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Immunol ; 43(2): 148-162, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033428

RESUMO

Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.


Assuntos
COVID-19 , Lisina , Humanos , Lisina/metabolismo , SARS-CoV-2 , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
J Hum Genet ; 67(7): 393-397, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35087201

RESUMO

Paucity of interlobular bile ducts (PILBD) is a heterogeneous disorder classified into two categories, syndromic and non-syndromic bile duct paucity. Syndromic PILBD is characterized by the presence of clinical manifestations of Alagille syndrome. Non-syndromic PILBD is caused by multiple diseases, such as metabolic and genetic disorders, infectious diseases, and inflammatory and immune disorders. We evaluated a family with a dominantly inherited PILBD, who presented with cholestasis at 1-2 months of age but spontaneously improved by 1 year of age. Next-generation sequencing analysis revealed a heterozygous CACYBP/SIP p.E177Q pathogenic variant. Calcyclin-binding protein and Siah1 interacting protein (CACYBP/SIP) form a ubiquitin ligase complex and induce proteasomal degradation of non-phosphorylated ß-catenin. Immunohistochemical analysis revealed a slight decrease in CACYBP and ß-catenin levels in the liver of patients in early infancy, which almost normalized by 13 months of age. The CACYBP/SIP p.E177Q pathogenic variant may form a more active or stable ubiquitin ligase complex that enhances the degradation of ß-catenin and delays the maturation of intrahepatic bile ducts. Our findings indicate that accurate regulation of the ß-catenin concentration is essential for the development of intrahepatic bile ducts and CACYBP/SIP pathogenic variant is a novel cause of PILDB.


Assuntos
Síndrome de Alagille , Proteínas de Ligação ao Cálcio , beta Catenina , Ductos Biliares Intra-Hepáticos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Humanos , Lactente , Recém-Nascido , Ubiquitina-Proteína Ligases , beta Catenina/metabolismo
3.
Neurosci Lett ; 765: 136267, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34571089

RESUMO

For the development of disease-modifying therapies for Parkinson's disease (PD) the identification of biomarkers in the prodromal stage is urgently required. Because PD is considered a systemic disease even in the early stage, we performed a metabolomic analysis of the plasma from a mouse model of prodromal PD (p-PD). Increased levels of isobutyrylcarnitine in p-PD mice imply an abnormality in ß-oxidation in mitochondria, and increased levels of pyrimidine nucleoside can be associated with mitochondrial dysfunction. Consistent with these results, the immunoblot analysis showed a defect in mitochondrial complex I assembly in p-PD mice. These results suggest that systemic mitochondrial dysfunction may exist in p-PD mice and contribute to the pathogenesis of PD, potentially being useful as early biomarkers for PD.


Assuntos
Biomarcadores/sangue , Carnitina/análogos & derivados , Mitocôndrias/patologia , Transtornos Parkinsonianos/metabolismo , Animais , Carnitina/sangue , Modelos Animais de Doenças , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Sintomas Prodrômicos
4.
Mol Brain ; 14(1): 80, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971917

RESUMO

Homozygous mutations in the lysosomal glucocerebrosidase gene, GBA1, cause Gaucher's disease (GD), while heterozygous mutations in GBA1 are a strong risk factor for Parkinson's disease (PD), whose pathological hallmark is intraneuronal α-synuclein (asyn) aggregates. We previously reported that gba1 knockout (KO) medaka exhibited glucosylceramide accumulation and neuronopathic GD phenotypes, including short lifespan, the dopaminergic and noradrenergic neuronal cell loss, microglial activation, and swimming abnormality, with asyn accumulation in the brains. A recent study reported that deletion of GBA2, non-lysosomal glucocerebrosidase, in a non-neuronopathic GD mouse model rescued its phenotypes. In the present study, we generated gba2 KO medaka and examined the effect of Gba2 deletion on the phenotypes of gba1 KO medaka. The Gba2 deletion in gba1 KO medaka resulted in the exacerbation of glucosylceramide accumulation and no improvement in neuronopathic GD pathological changes, asyn accumulation, or swimming abnormalities. Meanwhile, though gba2 KO medaka did not show any apparent phenotypes, biochemical analysis revealed asyn accumulation in the brains. gba2 KO medaka showed a trend towards an increase in sphingolipids in the brains, which is one of the possible causes of asyn accumulation. In conclusion, this study demonstrated that the deletion of Gba2 does not rescue the pathological changes or behavioral abnormalities of gba1 KO medaka, and GBA2 represents a novel factor affecting asyn accumulation in the brains.


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Doença de Gaucher/enzimologia , Glucosilceramidase/metabolismo , Neurônios/enzimologia , Neurônios/patologia , Oryzias/metabolismo , alfa-Sinucleína/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Autofagia , Doença de Gaucher/patologia , Deleção de Genes , Técnicas de Inativação de Genes , Modelos Biológicos , Mutação/genética , Fenótipo , Esfingolipídeos/metabolismo
5.
Neurosci Res ; 163: 43-51, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32145212

RESUMO

The central nervous system (CNS) uses a significant amount of oxygen for energy production. Decreased oxygen supply due to impaired blood supply critically damages the CNS. As chronic hypoxic conditions have diverse effects via the excessive production of reactive oxygen species, protection from hypoxic damage is important for cell survival. Recent studies have revealed that various markers of hypoxia are altered in age-related neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), indicating the involvement of hypoxia. However, therapeutic strategies targeting hypoxia-induced pathways in ALS have not been developed yet. We previously screened small-molecule compounds that inhibit hypoxia-induced cell death and identified 6-deoxyjacareubin. We hypothesized that the modulation of hypoxia signaling by 6-deoxyjacareubin might protect motor neurons in ALS. Here, we show that 6-deoxyjacareubin indeed ameliorates neurodegeneration in a mouse model of familial ALS. Administration of 6-deoxyjacareubin to this familial ALS model significantly attenuated disease progression and improved locomotor dysfunction. We also found that 6-deoxyjacareubin reduced motor neuron loss and glial activation. Our results indicate that 6-deoxyjacareubin might serve as a potential therapeutic tool for ALS. Moreover, these results suggest that modulation of hypoxia signaling pathways provides a promising strategy to develop therapies for other types of neurodegenerative diseases also characterized by hypoxia.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Morte Celular , Modelos Animais de Doenças , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Neurônios Motores , Piranos , Superóxido Dismutase , Superóxido Dismutase-1 , Xantenos
6.
FEBS Open Bio ; 10(9): 1758-1764, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32608563

RESUMO

Ferroptosis, a form of iron-dependent cell death caused by lipid peroxidation, has been implicated in neurological and other disorders. However, the mechanism of ferroptosis in oligodendrocytes is unclear. We tested the susceptibility of MO3.13 cells, an oligodendrocyte line, to ferroptosis after erastin treatment. Immature MO3.13 cells were more susceptible to erastin-induced ferroptosis than chemically differentiated mature MO3.13 cells. Increased expression of solute carrier family 7 member 11 (SLC7A11), which encodes a cystine/glutamate transporter, and greater glutathione concentrations were observed in mature compared with immature MO3.13 cells, linking glutathione to the resistance of mature MO3.13 cells to erastin-induced ferroptosis. These findings highlight the usefulness of immature MO3.13 cells in studies of ferroptosis and investigations into neuropathologies that involve oligodendrocytes.


Assuntos
Ferroptose/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Piperazinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos
7.
Proc Natl Acad Sci U S A ; 116(27): 13404-13413, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213539

RESUMO

BRUCE/Apollon is a membrane-associated inhibitor of apoptosis protein that is essential for viability and has ubiquitin-conjugating activity. On initiation of apoptosis, the ubiquitin ligase Nrdp1/RNF41 promotes proteasomal degradation of BRUCE. Here we demonstrate that BRUCE together with the proteasome activator PA28γ causes proteasomal degradation of LC3-I and thus inhibits autophagy. LC3-I on the phagophore membrane is conjugated to phosphatidylethanolamine to form LC3-II, which is required for the formation of autophagosomes and selective recruitment of substrates. SIP/CacyBP is a ubiquitination-related protein that is highly expressed in neurons and various tumors. Under normal conditions, SIP inhibits the ubiquitination and degradation of BRUCE, probably by blocking the binding of Nrdp1 to BRUCE. On DNA damage by topoisomerase inhibitors, Nrdp1 causes monoubiquitination of SIP and thus promotes apoptosis. However, on starvation, SIP together with Rab8 enhances the translocation of BRUCE into the recycling endosome, formation of autophagosomes, and degradation of BRUCE by optineurin-mediated autophagy. Accordingly, deletion of SIP in cultured cells reduces the autophagic degradation of damaged mitochondria and cytosolic protein aggregates. Thus, by stimulating proteasomal degradation of LC3-I, BRUCE also inhibits autophagy. Conversely, SIP promotes autophagy by blocking BRUCE-dependent degradation of LC3-I and by enhancing autophagosome formation and autophagic destruction of BRUCE. These actions of BRUCE and SIP represent mechanisms that link the regulation of autophagy and apoptosis under different conditions.


Assuntos
Autofagia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Apoptose , Autofagossomos/metabolismo , Dano ao DNA , Fibroblastos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Ubiquitinação
8.
Oncotarget ; 9(38): 25057-25074, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861853

RESUMO

Di(1H-indol-3-yl)(4-trifluoromethylphenyl)methane (DIM-Ph-4-CF3) is an analog of orphan nuclear receptor 4A1 (NR4A1) ligand cytosporone B. We have synthesized several oxidation products of DIM-Ph-4-CF3, focusing on analogs with electron-withdrawing or donating groups at their phenyl ring 4-positions, and examined their anti-cancer activity and mechanism-of-action. Mesylates (DIM-Ph-4-X+ OMs-s) having CF3, CO2Me and Cl groups were more effective inhibitors of cancer cell viability than their precursors. 19F NMR spectroscopy and differential scanning calorimetry strongly indicated interactions of DIM-Ph-4-CF3+ OMs- with the NR4A1 ligand binding domain, and compound-induced apoptosis of prostate cancer cells was dependent on NR4A1. DIM-Ph-4-CF3+ OMs- showed robust inhibition of LNCaP prostate cancer xenografts with no apparent toxicity. In vitro and in vivo, DIM-Ph-4-CF3+ OMs- activated proapoptotic unfolded protein response (UPR) signaling in prostate cancer cells. Independently of DIM-Ph-4-CF3+ OMs-, the bulk of NR4A1 localized to the cytoplasm in various cancer cell lines, suggesting a cytoplasmic mechanism-of-action of DIM-Ph-4-CF3+ OMs- in UPR induction and cell death. In summary, the data suggest that oxidized analogs of DIM-Ph-4-CF3 possess potent and safe anti-cancer activity which is mediated through UPR signaling downstream of NR4A1 binding.

9.
Oncotarget ; 8(40): 68448-68459, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978129

RESUMO

Melanoma-associated antigen family A (MAGE-A) is a family of cancer/testis antigens that are expressed in malignant tumors but not in normal tissues other than the testes. MAGE-A12 is a MAGE-A family gene whose tumorigenic function in cancer cells remains unclear. Searches of the Oncomine and NextBio databases revealed that malignant tumors show up-regulation of MAGE-A12 mRNA relative to corresponding normal tissue. In PPC1 primary prostatic carcinoma cells and in HCT116 colorectal cancer cells (wild type and p53-depleted), MAGE-A12 gene knockdown using siRNA or shRNA diminishes cancer cell proliferation as assessed by cellular ATP levels, cell counting, and clonogenic assays. FACS analyses of annexin V-PI staining and DNA content show that MAGE-A12 knockdown causes G2/M arrest and apoptosis. In tumor xenografts of HCT116 cells, conditional knockdown of MAGE-A12 suppresses tumor growth. The depletion of MAGE-A12 leads to the accumulation of tumor suppressor p21 in PPC1, HCT116, and p53-depleted HCT116 cells. Conversely, CDKN1A knockdown partially rescues the viability of PPC1 cells transfected with siRNA targeting MAGE-A12, while p21 overexpression leads to proliferation arrest in PPC-1 cells. Furthermore, exogenous MAGE-A12 expression promotes the ubiquitination of p21. Our findings reveal that MAGE-A12 plays crucial roles in p21 stability and tumor growth, suggesting that MAGE-A12 could provide a novel target for cancer treatment.

10.
Sci Rep ; 6: 35983, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796312

RESUMO

Obesity is associated with low-grade inflammation that leads to insulin resistance and type 2 diabetes via Toll-like Receptor (TLR) and TNF-family cytokine receptor (TNFR) signaling pathways. Ubc13 is an ubiquitin-conjugating enzyme responsible for non-canonical K63-linked polyubiquitination of TNF receptor-associated factor (TRAF)-family adapter proteins involved in TLR and TNFR pathways. However, the relationship between Ubc13 and metabolic disease remains unclear. In this study, we investigated the role of Ubc13 in insulin resistance and high-fat diet (HFD)-induced obesity. We compared wild-type (WT) and Ubc13 haploinsufficient (ubc13+/-) mice under normal diet (ND) and HFD, since homozygous knockout mice (ubc13-/-) are embryonic lethal. Male and female ubc13+/- mice were protected against age-related insulin resistance under ND and HFD compared to WT mice. Interestingly, only female ubc13+/- mice were protected against HFD-induced obesity and hepatic steatosis. Moreover, only female HFD-fed ubc13+/- mice showed lower expression of inflammatory cytokines that was secondary to reduction in weight gain not present in the other groups. In summary, our results indicate that suppression of Ubc13 activity may play a metabolic role independent of its inflammatory function. Thus, Ubc13 could represent a therapeutic target for insulin resistance, diet-induced obesity, and associated metabolic dysfunctions.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Obesidade/genética , Enzimas de Conjugação de Ubiquitina/genética , Animais , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/genética , Feminino , Haploinsuficiência , Masculino , Camundongos , Obesidade/induzido quimicamente , Transdução de Sinais
11.
PLoS One ; 11(9): e0161952, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27617834

RESUMO

Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity mediated by TNF and LT-α.


Assuntos
Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Mitocondriais/fisiologia , Mimetismo Molecular , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Polarização de Fluorescência , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ligação Proteica
12.
Mol Ther Nucleic Acids ; 5(6): e327, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27351680

RESUMO

PCTAIRE1/CDK16/PCTK1 plays critical roles in cancer cell proliferation and antiapoptosis. To advance our previously published in vitro results with PCTAIRE1 silencing, we examined the in vivo therapeutic potential of this approach by using small interfering RNA (siRNA) encapsulated by lipid nanoparticles. Therapy experiments of PCTAIRE1 siRNA were performed using human HCT116 colorectal cancer cells and human A2058 melanoma cells. A single dose of PCTAIRE1 siRNA-lipid nanoparticles was found to be highly effective in reducing in vivo PCTAIRE1 expression for up to 4 days as assayed by immunoblotting. Therapy experiments were started 4 days after subcutaneous injection of cancer cells. Treatment with PCTAIRE1 siRNA-lipid nanoparticles (0.5 mg/kg RNA, twice a week) reduced tumor volume and weight significantly compared with the scramble-control group. Histopathological analysis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) showed increased apoptosis of tumor cells treated with PCTAIRE1-siRNA. Overall, our results demonstrate that siRNA treatment targeting PCTAIRE1 is effective in vivo, suggesting that PCTAIRE1 siRNA-lipid nanoparticles might be a novel therapeutic approach against cancer cells.

13.
J Biol Chem ; 291(27): 14072-14084, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129202

RESUMO

B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins.


Assuntos
Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/química
14.
PLoS One ; 11(3): e0152692, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031987

RESUMO

Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli.


Assuntos
Glicosídeos Cardíacos/farmacologia , Proteínas Nucleares/metabolismo , Sumoilação/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Glicosídeos Cardíacos/química , Chlorocebus aethiops , Deleção de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Células Vero
15.
Mol Cancer Ther ; 15(1): 114-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26516157

RESUMO

Death receptors of the TNF family are found on the surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors 4 and 5 (DR4 and DR5) is TNF-related apoptosis-inducing ligand, TRAIL (Apo2L). As most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing proapoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 monospecific antibodies. Taken together, Surrobody shows promising preclinical proapoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent.


Assuntos
Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 290(44): 26549-61, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26378241

RESUMO

Autophagy is a catabolic cellular mechanism for entrapping cellular macromolecules and organelles in intracellular vesicles and degrading their contents by fusion with lysosomes. Important roles for autophagy have been elucidated for cell survival during nutrient insufficiency, eradication of intracellular pathogens, and counteracting aging through clearance of senescent proteins and mitochondria. Autophagic vesicles become decorated with LC3, a protein that mediates their fusion with lysosomes. LC3 is a substrate of the cysteine protease ATG4B (Autophagin-1), where cleavage generates a C-terminal glycine required for LC3 conjugation to lipids in autophagosomes. ATG4B both cleaves pro-LC3 and also hydrolyzes lipids from cleaved LC3. We show here that phosphorylation of ATG4B at Ser-383 and Ser-392 increases its hydrolyase activity as measured using LC3 as a substrate. Reconstituting atg4b(-/-) cells with phosphorylation-deficient ATG4B showed a role of ATG4B phosphorylation in LC3 delipidation and autophagic flux, thus demonstrating that the cellular activity of ATG4B is modulated by phosphorylation. Proteolytic conversion of pro-LC3 to LC3-I was not significantly impacted by ATG4B phosphorylation in cells. Phosphorylation-deficient ATG4B also showed reduced interactions with the lipid-conjugated LC3 but not unconjugated LC3. Taken together, these findings demonstrate a role for Ser-383 and Ser-392 phosphorylation of ATG4B in control of autophagy.


Assuntos
Autofagia/fisiologia , Cisteína Endopeptidases/metabolismo , Lipoilação/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteólise , Animais , Proteínas Relacionadas à Autofagia , Células Cultivadas , Cisteína Endopeptidases/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Fosforilação/fisiologia
17.
J Biomol Screen ; 20(10): 1232-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26265713

RESUMO

Endoplasmic reticulum (ER) stress activates three distinct signal transducers on the ER membrane. Inositol-requiring protein 1 (IRE1), the most conserved signal transducer, plays a key role in ER stress-mediated signaling. During ER stress, IRE1 initiates two discrete signaling cascades: the "adaptive" signaling cascade mediated by the XBP1 pathway and the "alarm" signaling cascade mediated by stress-activated protein kinase pathways. Fine-tuning of the balance between the adaptive and alarm signals contributes significantly to cellular fate under ER stress. Thus, we propose that the design of high-throughput screening (HTS) assays to selectively monitor IRE1 mediated-signaling would be desirable for drug discovery. To this end, we report the generation of stable human neural cell lines and development of cell-based HTS luciferase (Luc) reporter gene assays for the identification of pathway-specific chemical modulators of IRE1. We implemented a cell-based Luc assay using a chimeric CHOP-Gal4 transcription factor in 384-well format for monitoring IRE1 kinase-mediated p38MAPK activation and an unfolded response pathway element (URPE)-Luc cell-based assay in 1536-well format for monitoring IRE1's RNase-mediated activation of XBP1. Chemical library screening was successfully conducted with both the CHOP/Gal4-Luc cells and UPRE-Luc engineered cells. The studies demonstrate the feasibility of using these HTS assays for discovery of pathway-selective modulators of IRE1.


Assuntos
Endorribonucleases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/fisiologia , Ativação Enzimática , Genes Reporter , Células HeLa , Humanos , Luciferases/análise , Luciferases/genética , Sistema de Sinalização das MAP Quinases , Neurônios , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição de Fator Regulador X , Tapsigargina/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
18.
PLoS One ; 10(6): e0130635, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086088

RESUMO

Perturbation of endoplasmic reticulum (ER) homeostasis triggers the ER stress response (also known as Unfolded Protein Response), a hallmark of many pathological disorders. However the connection between ER stress and inflammation remains largely unexplored. Recent data suggest that ER stress controls the activity of inflammasomes, key signaling platforms that mediate innate immune responses. Here we report that expression of NLRP1, a core inflammasome component, is specifically up-regulated during severe ER stress conditions in human cell lines. Both IRE1α and PERK, but not the ATF6 pathway, modulate NLRP1 gene expression. Furthermore, using mutagenesis, chromatin immunoprecipitation and CRISPR-Cas9-mediated genome editing technology, we demonstrate that ATF4 transcription factor directly binds to NLRP1 promoter during ER stress. Although involved in different types of inflammatory responses, XBP-1 splicing was not required for NLRP1 induction. This study provides further evidence that links ER stress with innate.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Inflamassomos/metabolismo , Fator 4 Ativador da Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Células HCT116 , Células HeLa , Humanos , Células Jurkat , Células K562 , Mutagênese , Proteínas NLR , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/metabolismo
19.
Nat Commun ; 6: 7014, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25916556

RESUMO

Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1(-/-) mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Cisteína Endopeptidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Metabolismo Energético , Tolerância ao Exercício , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Oxidativo
20.
PLoS One ; 10(3): e0119404, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790448

RESUMO

While PCTAIRE1/PCTK1/Cdk16 is overexpressed in malignant cells and is crucial in tumorigenesis, its function in apoptosis remains unclear. Here we investigated the role of PCTAIRE1 in apoptosis, especially in the extrinsic cell death pathway. Gene-knockdown of PCTAIRE1 sensitized prostate cancer PPC1 and Du145 cells, and breast cancer MDA-MB-468 cells to TNF-family cytokines, including TNF-related apoptosis-inducing ligand (TRAIL). Meanwhile, PCTAIRE1-knockdown did not sensitize non-malignant cells, including diploid fibroblasts IMR-90 and the immortalized prostate epithelial cell line 267B1. PCTAIRE1-knockdown did not up-regulate death receptor expression on the cell surface or affect caspase-8, FADD and FLIP expression levels. PCTAIRE1-knockdown did promote caspase-8 cleavage and RIPK1 degradation, while RIPK1 mRNA knockdown sensitized PPC1 cells to TNF-family cytokines. Furthermore, the kinase inhibitor SNS-032, which inhibits PCTAIRE1 kinase activity, sensitized PPC1 cells to TRAIL-induced apoptosis. Together these results suggest that PCTAIRE1 contributes to the resistance of cancer cell lines to apoptosis induced by TNF-family cytokines, which implies that PCTAIRE1 inhibitors could have synergistic effects with TNF-family cytokines for cytodestruction of cancer cells.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HEK293 , Células HeLa , Humanos , Oxazóis/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...